本地语言识别(NLI)是培训(通过监督机器学习)的任务,该分类器猜测文本作者的母语。在过去的十年中,这项任务已经进行了广泛的研究,多年来,NLI系统的性能稳步改善。我们专注于NLI任务的另一个方面,即分析由\ emph {Aupplable}机器学习算法培训的NLI分类器的内部组件,以获取其分类决策的解释,并具有获得的最终目标,即获得最终的目标。深入了解语言现象````赋予说话者''的母语''。我们使用这种观点来解决NLI和(研究得多的)伴侣任务,即猜测是由本地人还是非本地人说的文本。使用三个不同出处的数据集(英语学习者论文的两个数据集和社交媒体帖子的数据集),我们研究哪种语言特征(词汇,形态学,句法和统计)最有效地解决了我们的两项任务,即,最大的表明说话者的L1。我们还提出了两个案例研究,一个关于西班牙语,另一个关于意大利英语学习者,其中我们分析了分类器对发现这些L1最重要的单个语言特征。总体而言,我们的研究表明,使用可解释的机器学习可能是TH的宝贵工具
translated by 谷歌翻译
随着网络和在线百科全书的可访问性的增加,要管理的数据量正在不断增加。例如,在Wikipedia中,有数百万页用多种语言编写。这些页面包含通常缺乏文本上下文的图像,在概念上保持浮动,因此很难找到和管理。在这项工作中,我们介绍了我们设计的系统,用于参加Kaggle上的Wikipedia图像捕捉匹配挑战,其目的是使用与图像(URL和视觉数据)相关的数据来在大量可用图像中找到正确的标题。能够执行此任务的系统将改善大型在线百科全书上多媒体内容的可访问性和完整性。具体而言,我们提出了一个由最近的变压器模型提供支持的两个模型的级联,能够有效地推断出查询图像数据和字幕之间的相关得分。我们通过广泛的实验来验证,提出的两模型方法是处理大量图像和标题的有效方法,同时保持了推理时的整体计算复杂性。我们的方法取得了显着的结果,在Kaggle Challenge的私人排行榜上获得了0.53的归一化折扣累积增益(NDCG)值。
translated by 谷歌翻译
LeQua 2022是评估“学习”在文本数据集中的“学习”中的方法的新实验室,即,用于对未标记的文本文件集合感兴趣的相对频率的培训预测因子。虽然通过文本分类器首次分类所有文档可以轻松地实现这些预测,但是将分配给类的文档的数量,而且越来越多的文献已经显示出这种方法是次优的,并且已经提出了更好的方法。本实验的目标是为学习测量的方法的比较评估提供一个设置,无论是在二进制设置和单个标签多字符设置中。对于每个这样的设置,我们提供现成的矢量表单或原始文档表单的数据。
translated by 谷歌翻译
越来越多地部署算法和模型来为人们提供决定,不可避免地会影响他们的生活。结果,负责开发这些模型的人必须仔细评估他们对不同人群的影响并偏爱群体公平,也就是说,确保由敏感人口属性(例如种族或性别)确定的群体不会受到不公正的对待。为了实现这一目标,这些人口统计学属性的可用性(意识)是评估这些模型影响的人的基本基础。不幸的是,收集和存储这些属性通常与行业实践以及有关数据最小化和隐私的立法冲突。因此,即使是从开发它们的公司内部,也很难衡量训练有素的模型的群体公平性。在这项工作中,我们通过使用量化技术来解决在敏感属性不认识的情况下衡量群体公平性的问题,这是一项与直接提供群体级别的患病率估算(而不是个人级别的类标签)有关的监督学习任务。我们表明,量化方法特别适合解决未通行问题的公平性,因为它们是可行的不可避免的分配变化,同时将(理想的)目标取消了(不可避免的)允许(不良)的副作用的(理想的)目标个人敏感属性的推断。更详细地说,我们表明,在不认识下的公平性可以作为量化问题,并通过量化文献中的可靠方法解决。我们表明,这些方法在五个实验方案中测量人口统计学的先前方法都优于以前的方法,这对应于使分类器公平性估计不认识的重要挑战。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
Explainability is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the topic, yet explainability still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the product of evidence stemming from the model and its input-output and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's decision-making) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are ope rationalized and provide new insight into common explanation methods that we analyze as case studies.
translated by 谷歌翻译
Fruit is a key crop in worldwide agriculture feeding millions of people. The standard supply chain of fruit products involves quality checks to guarantee freshness, taste, and, most of all, safety. An important factor that determines fruit quality is its stage of ripening. This is usually manually classified by experts in the field, which makes it a labor-intensive and error-prone process. Thus, there is an arising need for automation in the process of fruit ripeness classification. Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded. Machine learning and deep learning techniques dominate the top-performing methods. Furthermore, deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features, which are often crop-specific. In this survey, we review the latest methods proposed in the literature to automatize fruit ripeness classification, highlighting the most common feature descriptors they operate on.
translated by 谷歌翻译
Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.
translated by 谷歌翻译
In recent years, reinforcement learning (RL) has become increasingly successful in its application to science and the process of scientific discovery in general. However, while RL algorithms learn to solve increasingly complex problems, interpreting the solutions they provide becomes ever more challenging. In this work, we gain insights into an RL agent's learned behavior through a post-hoc analysis based on sequence mining and clustering. Specifically, frequent and compact subroutines, used by the agent to solve a given task, are distilled as gadgets and then grouped by various metrics. This process of gadget discovery develops in three stages: First, we use an RL agent to generate data, then, we employ a mining algorithm to extract gadgets and finally, the obtained gadgets are grouped by a density-based clustering algorithm. We demonstrate our method by applying it to two quantum-inspired RL environments. First, we consider simulated quantum optics experiments for the design of high-dimensional multipartite entangled states where the algorithm finds gadgets that correspond to modern interferometer setups. Second, we consider a circuit-based quantum computing environment where the algorithm discovers various gadgets for quantum information processing, such as quantum teleportation. This approach for analyzing the policy of a learned agent is agent and environment agnostic and can yield interesting insights into any agent's policy.
translated by 谷歌翻译